skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Valli, Mauro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We provide new constraints on the dark matter halo density profile of Milky Way (MW) dwarf spheroidal galaxies (dSphs) using the phase-space distribution function (DF) method. After assessing the systematics of the approach against mock data from the Gaia Challenge project, we apply the DF analysis to the entire kinematic sample of well-measured MW dwarf satellites for the first time. Contrary to previous findings for some of these objects, we find that the DF analysis yields results consistent with the standard Jeans analysis. In particular, in this study we rediscover (i) a large diversity in the inner halo densities of dSphs (bracketed by Draco and Fornax), and (ii) an anticorrelation between inner halo density and pericenter distance of the bright MW satellites. Regardless of the strength of the anticorrelation, we find that the distribution of these satellites in density versus pericenter space is inconsistent with the results of the high-resolution N-body simulations that include a disc potential. Our analysis motivates further studies on the role of internal feedback and dark matter microphysics in these dSphs. 
    more » « less
  2. Abstract In this work we present : A package dedicated to efficient computations of observables in the Early Universe with the focus on the cosmological era of Big Bang Nucleosynthesis (BBN). The code offers fast and precise evaluation of BBN light-element abundances together with the effective number of relativistic degrees of freedom, including non-instantaneous decoupling effects. is suitable for state-of-the-art analyses in the Standard Model as well as for general investigations into New Physics active during BBN. After reviewing the physics implemented in , we provide a short guide on how to use the code for applications in the Standard Model and beyond. The package is written in Python, but more advanced users can optionally take advantage of the open-source community for Julia. is publicly available on GitHub. 
    more » « less
  3. ABSTRACT We explore the properties of Milky Way (MW) subhaloes in self-interacting dark matter models for moderate cross-sections of 1–5 cm2 g−1 using high-resolution zoom-in N-body simulations. We include the gravitational potential of a baryonic disc and bulge matched to the MW, which is critical for getting accurate predictions. The predicted number and distribution of subhaloes within the host halo are similar for 1 and 5 cm2 g−1 models, and they agree with observations of MW satellite galaxies only if subhaloes with peak circular velocity over all time >7 km s−1 are able to form galaxies. We do not find distinctive signatures in the pericentre distribution of the subhaloes that could help distinguish the models. Using an analytical model to extend the simulation results, we are able to show that subhaloes in models with cross-sections between 1 and 5 cm2 g−1 are not dense enough to match the densest ultrafaint and classical dwarf spheroidal galaxies in the MW. This motivates exploring velocity-dependent cross-sections with values larger than 5 cm2 g−1 at the velocities relevant for the satellites such that core collapse would occur in some of the ultrafaint and classical dwarf spheroidals. 
    more » « less